
Figure 7: Isotherms for steady state heat conduction solution on �n geometry and grid of
Fig. 5 with N = 5

Figure 8: Channel 
ow solution superimposed on the triangular grid using four elements
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Figure 5: Spectral element grid for a �n geometry using 34 elements

Figure 6: Convergence plot for solution of Poisson's equation on a triangular grid
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Figure 2: Nodal points used on the triangular spectral elements
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Figure 3: Quadrature points used on the triangular spectral elements
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Figure 1: Elemental mappings for a) standard quadrilateral spectral elements and b) trian-

gular spectral elements
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6. TWO-DIMENSIONAL FLUID FLOW ILLUSTRATION

The Navier-Stokes triangular spectral element solver is illustrated in Figure 8 by a solu-

tion for a laminar channel 
ow. The four element triangular grid is shown along with the

velocity pro�le. The velocity pro�le is exact (parabolic). This solution was obtained from an

initial solution which was perturbed by 10% from the exact solution and allowed to march

in time until it stabilized itself to the exact laminar parabolic velocity solution. While the

geometry is simple, more complex geometry solutions will be available by the conference.

7. CONCLUSION

In this paper, we have generalized the spectral element method to grids containing tri-

angular elements. Triangular elements are important since they provide greater geometric


exibility than quadrilateral elements. They have, however, not been used previously since

e�cient tensor product algorithms were not available for triangles. The algorithms given

here remedy this, allowing one to design e�cient spectral element programs using triangular

elements. The order of complexity of our algorithms for triangular elements is identical to

that for quadrilateral elements, though the constants in these complexity bounds are poorer.

Thus a natural approach is to combine triangular and quadrilateral spectral elements us-

ing the e�cient quadrilateral elements in the domain interior, and switching to triangles as

needed along complex boundaries for geometric 
exibility in modeling incompressible 
uid


ow.
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r � ~u = 0;

where ~u is the velocity vector, p is the pressure, and R is the Reynolds number, are solved

by a fractional time-stepping scheme as follows:

û� ~un

�t
= ~u � r~u

r2p =
1

�t
r � û

^̂u� û

�t
= �rp

~un+1 � ^̂u

�t
=

1

R
r2~u:

This scheme permits the decoupling of the pressure and velocity, which, conveniently, can

both be solved by Poisson solvers. The nonlinear convective terms are treated explicitly by

a third order Adams-Bashforth scheme as follows:

(~u � r~u)n =
2X

q=0

�q(~u
n�q � r~un�q)

�0 = 23=12 �1 = �16=12 �2 = 5=12:

And hence the viscous terms are solved implicitly. The discretized Poisson equations are

solved iteratively by a preconditioned conjugate gradient method. The preconditioners are

simply the diagonal matrices.

All equations are solved in variational form since derivatives cannot be taken on the nodal

point basis. Hence, for example, the pressure Poisson solver may be written as

r2p =
1

�t
r � û =

1

�t
r � (~un +�t ~u � r~u)

which taken term by term gives:

r2p =) (r2p; �) = �(rp;r�) + boundary terms

1

�t
r � un =)

1

�t
(r � un; �)

r � (~u � r~u) =) (r � (~u � r~u); �) = �(~u � ru; �x)� (~u � rv; �y) + b.t.

where ~u = u~i+ v~j. Again, all these calculations are implemented with isoparametric map-

pings for arbitrarily shaped triangular elements.
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order time to compute nodes in time per node

element residual element divided by order

2 2.2 ms 6 .183

4 8.5 ms 15 .139

8 48 ms 45 .133

16 338 ms 153 .139

Table 1: Execution time for residual calculation on triangular spectral elements

order of the polynomial. This veri�es that the calculation requires O(N3) operations: to be

exact the number of nodes is (N + 1)(N + 2)=2 so the number of operations is O(N(N +

1)(N + 2)=2) = O((N3 + 3N2 + 2N)=2).

4. VALIDATION

The triangular spectral element Poisson solver is validated on the grid shown in Figure 5.

The grid contains 34 triangular elements of varying shapes. Deformed elements are mapped

to the right triangle T via isoparametric mappings. Figure 6 represents a convergence plot for

the solution of Poisson's equation r2u = f on the grid of Figure 5 with Dirichlet boundary

conditions and f = �3:25�2 sin�x sin 3
2
�y: The straight line convergence in the log-linear

plot of error versus N the order of the polynomial indicates that exponential convergence

has been achieved. Hence we have developed suitable triangular elements which preserve the

exponential accuracy of spectral type methods.

Figure 7 illustrates a steady state heat conduction solution in a �n using the same grid

with N = 5 (Fig. 5): r2T = q where q = 0, the upper and side boundaries of the �n root

are held at T1 = 1, the lower �n root boundaries are linearly varying from T1 = 1 to To = 0,

and the �n surfaces are held at To = 0. The solution is shown in terms of isotherms.

5. NAVIER-STOKES TRIANGULAR SPECTRAL ELEMENT IMPLEMEN-

TATION

Direct simulation of incompressible 
ow is achieved by the high accuracy solution of the

full unsteady non-linear Navier-Stokes equations using triangular spectral elements. The

scheme follows standrad spectral element procedures described in1;2;3, hence the discussion

will remain brief. The Navier-Stokes equations

@~u

@t
+ ~u � r~u = �rp+

1

R
r2~u

8



Finally, for the tensor product polynomials QN we de�ne the basis functions

 ij � li qj

and the basis

B = f  ij g (i;j) 2 2

where 2 was de�ned in Equation (2).

Outline of Computation

Given the values of a trial function u at the nodes of the triangle T , the goal is to evaluate

the sti�ness inner products:

f a(u; �ij) g (i;j) 2 �:

This could obviously be done by direct quadrature of the trial solution u with each of

these test functions but the cost would be O(N4). There are (N + 1)2 quadrature points

and N2 + 3N + 3 test functions. The alternative is to convert from the basis B� to a

more convenient basis, then compute quadratures by a fast tensor product algorithm. The

resulting algorithm is more complicated, but requires only O(N3) operations, as in the case

of quadrilateral spectral elements.

The �rst step is to convert the trial solution u expressed in the basis B� for PN (T ) to

the basis B for QN via the operations

B� ) B� ) B :

This can always be done, since PN � QN . Next we evaluate the sti�ness inner products:

f a(u;  ij) g (i;j) 2 2:

Finally, these inner products are converted back to the basis B� and then to B�:

f a(u;  i;j) g(i;j)22 ) f a(u; �ij) g(i;j)2� ) f a(u; �ij) g(i;j)2�

so that we have the sti�ness inner products f a(u; �ij) g(i;j)2� as required.

This is, in outline, the residual calculation. The total residual evaluation may be sum-

marized in graphical format as in Figure 4.

The total cost here is O(N3), since each step is a tensor product operation requiring

O(N3) operations. The constant in this O(N3) bound is, however, larger than in the case of

quadrilateral elements. The total number of arithmetic operations is about double that of

quadrilateral elements of order N . Table 1 presents timings for the calculation of one residual

on triangular spectral elements. The time per node is shown to be proportional with the
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then

p(x) =
NX

i=0

ai li(x):

In particular, since

dk
i
(�j) = �ij; 0 � j � k

we have

dk
i
(x) =

mX

j=0

hji lj(x):

Polynomial Bases in Two Dimensions

In two dimensions there are two polynomial spaces of interest, the space of polynomials

of degree N , and the space of tensor product polynomials:

PN (T ) = polynomials of order N on T

QN = tensor product polynomials of order N

where T is the right triangle of side one shown in Figure 1b. QN is the space of polynomials

of degree N in x and y separately. Thus we have the natural embedding:

PN (T ) � QN

The notation PN (T ) for the space of polynomials in two dimensions is used to avoid confusion

with our notation PN , for the space of polynomials in one dimension.

Two di�erent sets of bases functions are used for the space PN (T ). First, given our choice

of the tensor product Gauss Lobatto points f(�i; �j) j (i; j) 2 �g as nodes (see Equation

(1) and Figure 2), we de�ne \nodal" basis functions:

�ij � p 2 PN (T ) j p(�l; �k) = �il �jk:

The corresponding basis for PN (T ) is

B� = f �i;j g (i;j) 2 �

and is the most natural basis here, though it is awkward for computation. An alternate set

of basis functions for PN (T ) is the set of polynomials

�ij � li d
N�i

j

with the corresponding basis:

B� = f �ij g (i;j) 2 �:

6



Polynomial Bases in One Dimension

Let N be the order of the spectral element. De�ne the one dimensional polynomial

spaces:

PN = polynomials on [0; 1] of order N

P k; k � N = polynomials of order k

The N -th order Lagrangian interpolation polynomials with zeroes at the Gauss Lobatto

points are

qi � p 2 PN j p(�j) = �ij; 0 � j � N

where �ij is the Kronecker delta.

We also need the Lagrange basis functions for P k with nodes at the �rst k of the Gauss

Lobatto points f �i g
N

i=0

dk
i

� p 2 P k j p(�j) = �ij; 0 � j � k:

Finally de�ne the polynomials

li = di
i

Then we have the relations:

qi = dN
i

PN = spanf qi g
N

i=0 = spanf li g
N

i=0

P k = spanf dk
i
gk
i=0 = spanf li g

k

i=0

For later use, we form the matrix whose elements are the values of the basis functions

flkg
N

k=0 at the Gauss Lobatto points. De�ne the matrix G having elements:

gik = lk(�i); 8 i; k; 0 � i; k � N:

Each lk is zero on f�ig
k�1
i=0 , one at �k, and greater than one at the remaining Gauss Lobatto

points. Thus G is a lower triangular matrix with unit diagonal.

Since G is a nonsingular triangular matrix, its inverse is easy to compute. Let H = fhijg

be the inverse of G. The matrixH gives the transformation from function values at the Gauss

Lobatto points to polynomials expressed in the basis flkg
N

k=0. That is, for any p 2 P
N , if

ai =
NX

k=0

hik p(�k);

5



Compatibility of this triangular element with the quadrilateral spectral elements is ap-

parent for the edges lying along the lines x = 0 and y = 0. We also have the Gauss Lobatto

point spacing along the line x+ y = 1, so this edge is also compatible with the quadrilateral

elements, and with any edge of other triangular elements.

Quadrature Points

There is some degree of latitude in the selection of quadrature points within the

triangular elements. Any choice that guarantees accurate integration of polynomials of

su�cient order will be adequate. There are many families of quadrature formulas designed

speci�cally for triangles5. However, formulas speci�c to triangles do not have the regular

pattern of quadrature points needed for exploitation of tensor product structure. We choose

instead to use the tensor product Gauss Lobatto formulas. While this approximately doubles

the number of quadrature points used, as shown in Figure 3, it does allow exploitation of

tensor product structure. In the case of high order elements, exploitation of tensor product

structure is crucial. Figure 3 illustrates the choice of quadrature points on the reference

triangle T . They are the points

f(�j
i
; �j)g(i;j)22

where the y coordinates (�j) are the same as for the nodal points and the x coordinates (�j
i
)

are di�erent for each j or constant y line. On each j line the coordinates of the quadrature

points are

�j
i
= (1� �j) �i

which are just the usual Gauss Lobatto points on the square mapped into our triangular

domain.

3. RESIDUAL CALCULATION

The key to the e�ciency of the spectral element method is the existence of fast tensor

product algorithms for evaluation of residuals. In this section we describe our tensor product

algorithm for the residual calculation on triangles. We �rst describe the polynomial bases

needed and outline the algorithm. Then we describe each of the steps involved in relative

detail.
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In extending the spectral element method to triangular elements, it is natural to design

a nodal element method, since this is simpler than directly enforcing the C0 continuity

condition between elements, and simpli�es boundary treatments. Moreover, by choosing a

set of nodes compatible with those used for quadrilateral spectral elements, we can make a

triangular element that can be freely intermixed with quadrilateral elements.

For quadrilateral elements, one de�nes a standard element on the unit square, as shown

in Figure 1a. Curvilinear elements needed in the grid are then constructed by mapping to

this standard element. The same approach is followed with triangles, as shown in Figure 1b:

arbitrary triangles are mapped to the right triangle T of sides [0; 1].

Nodal Points

We take as nodal points the tensor product Gauss Lobatto points lying within this

triangle, as shown in Figure 2. If the quadrature points for the 2N -order Gauss Lobatto

formula on the interval [0; 1] uses points

Z = f�ig
N

i=0

we take as nodes, the points:

f(�i; �j) j 0 � i; j � N; i+ j � Ng:

To denote these points on the triangle, we will use the notation (�i; �j)(i;j)2� where

� = f(i; j) j 0 � i; j � N; i+ j � Ng: (1)

In order to avoid confusion we will adopt the notation (�i; �j)(i;j)22, where

2 = f(i; j) j 0 � i; j � Ng (2)

for the usual index range.

Let � be the unit interval [0; 1]. The polynomial basis functions on � are chosen to be

the Lagrangian interpolants hi 2 P
N (�) satisfying:

hi(�j) = �i;j

where �i;j is the Kronecker delta. They have the explicit representation:

hi(z) = �
1

N(N + 1)LN (�i)

(1� z2)L0

N
(z)

z � �i
;

where LN is the Legendre polynomial of order N and �i, i = 0; . . . ; N are the roots of L0

N
.

The representation of these nodal points on the reference triangle T is given in Figure 2.
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imum vertex angle is bounded from below, if the minimum angle approaches zero as the

grid is re�ned, inconsistency occurs. Even when quadrilaterals maintain consistency, the

discretization error using triangular elements is always better when small angles occur.

The geometric 
exibility and favorable approximation properties of triangular elements

are widely appreciated in the context of �nite elements. However, since the fast tensor

product algorithms used with quadrilateral elements do not apply to triangular elements,

triangular spectral elements do not seem to have been used until now. A fast spectral

element method for triangles and other regions was derived previously by Dubiner6, but is

quite complex, and is rarely used. Also, Funaro7 developed a technique for treating triangles

for spectral multidomain methods but does not advocate its use.

Dubiner's approach is based on construction of an orthonormal basis for the polynomials

on a triangle. He shows that there are orthonormal bases that are both well conditioned,

and have sparse sti�ness matrices, leading to fast algorithms. However, to provide an easy

means of enforcing inter-element continuity, his basic method needs to be modi�ed. He

thus constructs a new basis consisting of interior shape functions, vanishing on the element

boundary, together with boundary functions used to enforce C0 interelement continuity.

Our approach and Dubiner's both yield compution cost O(N3) to evaluate the residual

on a triangle with (N + 1)N=2 degrees of freedom, and both appear relatively stable and

well conditioned. The central advantage of our approach is its comparative simplicity. In

particular, incorporation of the new triangular elements into existing spectral element codes

is relatively straightforward.

The remainder of the paper is organized as follows. In the next section we describe the

design of the triangular elements to be used in conjunction with our spectral discretization.

Section 3 outlines the residual calculation with fast tensor products on the triangular ele-

ments. An example calculation is then given in section 4 to show that spectral accuracy is

retained on the new triangular elements. Section 5 describes the implementation of trian-

gular elements in the solution of the incompressible Navier-Stokes calculations, and a 
uid


ow example follows.

2. DESIGN OF TRIANGULAR ELEMENTS

The spectral element method is a high order generalization of �nite elements. The stan-

dard C0 quadrilateral �nite element method takes as trial space the tensor product space

QN of polynomials with terms of degree at most N in either x or y. For triangular elements,

one takes instead the space PN of polynomials in x and y of degree N . Since quadrilateral

spectral elements are based on the trial space QN too, we use the space PN for triangular

spectral elements. It seems to be the only natural choice.
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1. INTRODUCTION

The spectral element method is a relatively new method which provides both the geomet-

ric 
exibility of �nite element methods and the exponential accuracy of spectral methods1;2;3.

It is currently being used for direct simulation of incompressible 
uid 
ow. With this method,

the full Navier-Stokes equations can be solved in relatively complex geometries. Our goal is

to increase the 
exibility of the method, to enable high accuracy direct simulation of 
ows

in complex geometries to be done e�ciently.

The basic idea of the spectral element method is to use a tensor product basis of orthog-

onal polynomials on fairly large curvilinear quadrilateral subdomains mapped to the square

[�1; 1]2. The biggest di�erence between this approach and standard �nite elements is that

with spectral elements, the elements are much larger and the number of elements is smaller,

allowing the use of high order basis functions (polynomials of order �ve to �fteen) on each

element. Further, the sti�ness matrix quadratures are done \on the 
y" during residual

calculations as part of the solution procedure. This can be quite e�cient, through the use

of the tensor product representation for polynomials.

The spectral element method provides the same exponential convergence to the solution

as spectral or pseudo-spectral discretizations. However, since the grid in the spectral element

method can be formed by joining together any number of mapped quadrilateral subdomains,

this approach provides far greater geometric 
exibility than use of a single spectral domain.

With the spectral method, only smooth mappings of the entire domain are admissible without

sacri�cing the convergence rate. The spectral element method represents a liberation from

this restriction, providing great geometric 
exibility without sacri�cing spectral convergence

to the true solution.

However, while the spectral element method provides much greater geometric 
exibility

than spectral methods, the restriction to quadrilateral spectral elements does limit geometric


exibility. Quadrilateral domains are awkward, especially in regions of high curvature, which

are typically also regions requiring �ne resolution. Further, irregular geometries such as rough

walls of irregular shape are not easily gridded by quadrilateral elements. Triangulation, used

in unstructured �nite volume and �nite element methods, (see, for example 4), represents a

far easier method to create grids in such cases.

In addition to convenience and geometric 
exibility, triangular elements have a funda-

mental advantage over quadrilateral elements. It is well known that the conditioning of

quadrilateral �nite elements degenerates as the angles at their vertices approach 0 or 180

degrees. However with triangles, in the limit as the smallest angle goes to zero one retains a

convergent discretization5. This is not the case for quadrilaterals using the standard tensor

product polynomial bases. While quadrilaterals give consistent discretizations if the min-

1
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ABSTRACT

In this paper we discuss the use of triangular elements in the spectral element method for

direct simulation of incompressible 
ow. Triangles provide much greater geometric 
exibility

than quadrilateral elements and are better conditioned and more accurate when small angles

arise. We employ a family of tensor product algorithms for triangles, allowing triangular

elements to be handled with comparable arithmetic complexity to quadrilateral elements.

The triangular discretizations are applied and validated on the Poisson equation. These

discretizations are then applied to the incompressible Navier-Stokes equations and a laminar

channel 
ow solution is given. These new triangular spectral elements can be combined

with standard quadrilateral elements, yielding a general and 
exible high order method for

complex geometries in two dimensions. The natural generalization to tetrahedral elements

in three dimensions will be described in a future work.
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